Editors’ preface

We would first and foremost like to thank the organizers of NELS 47, Alexander Göbel, Deniz Özyıldız, Ethan Poole, Ekaterina Vostrikova, Jon Ander Mendia, Leland Kusmer, Rodica Ivan, and Thuy Bui, as well as everyone in the Linguistics Department at UMass, Amherst who made the conference possible.

For their guidance and advice throughout the editing process, we are grateful to Christopher Hammerly and Brandon Prickett as well as all the preceding editors whose work has incrementally created the style sheets and author guidelines.

We thank the Department of Linguistics at UMass, Amherst for financial support.

We thank all the authors who generously contributed their papers and made the editing process fun and painless.

Lastly, we thank you, our readers, for your continued interest in the volumes. Without you, they would not exist.

Andrew Lamont and Katerina Tetzloff

Northampton, September 2017
Organizers’ preface

The 47th Annual Meeting of the North East Linguistics Society (NELS) was hosted and organized by the University of Massachusetts Amherst (UMass) on 14–16 October 2016. The program included four invited speakers, fifty oral presentations, and fifty poster presentations. There were two special sessions dedicated to linearization and grammatical illusions. The invited speakers were Klaus Abels, Cleo Condoravdi, Gaja Jarosz, and Roumyana Pancheva.

Organizing and executing NELS is no small feat, and many people contributed to its success. The graduate-student organizing committee members were: Thuy Bui, Alexander Göbel, Rodica Ivan, Leland Kusmer, Jon Ander Mendia, Deniz Özyıldız, Ethan Poole, and Ekaterina Vostrikova. We thank the many student volunteers from UMass: Carolyn Anderson (who deserves special thanks), Sakshi Bhatia, Leah Chapman, Hsin-Lun Huang, Ivy Hauser, Jyoti Iyer, Kimberly Johnson, Jaieun Kim, Andrew Lamont, Brandon Prickett, and Georgia Simon. We also thank those who chaired sessions: Sakshi Bhatia, Rajesh Bhatt, Elizabeth Bogal-Allbritten, Seth Cable, Amy Rose Deal, Lyn Frazier, Ivy Hauser, Coral Hughto, Kyle Johnson, Stefan Keine, Angelika Kratzer, Nicholas LaCara, Joe Pater, and Andrew Weir. Special thanks to Tom Maxfield and Michelle McBride for administrative help and to the UMass Linguistics Department for their support. We apologize to anyone who we have inadvertently forgotten to thank.

We would like to express our sincere gratitude to our financial sponsors (all at UMass): the Interdisciplinary Studies Institute, the College of Humanities and Fine Arts, and the Department of Linguistics. Without their contributions, NELS 47 would not have been possible. We thank John Kingston for his instrumental help in securing these funds.

As every year, NELS is indebted to the many linguists who participated in the review process, this year helping to review the 417 submitted abstracts. We would like to thank the reviewers for ensuring the continued stellar quality of NELS presentations.
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gennaro Chierchia</td>
<td>Thomas Grano</td>
<td>Jonah Katz</td>
</tr>
<tr>
<td>Sandra Chung</td>
<td>Margaret Grant</td>
<td>Magdalena Kaufmann</td>
</tr>
<tr>
<td>Brady Clark</td>
<td>Lydia Grebenyova</td>
<td>Stefan Kaufmann</td>
</tr>
<tr>
<td>Meghan Clayards</td>
<td>Vera Gribanova</td>
<td>Shigeto Kawahara</td>
</tr>
<tr>
<td>Lauren Clemens</td>
<td>Jane Grimshaw</td>
<td>Stefan Keine</td>
</tr>
<tr>
<td>Chuck Clifton</td>
<td>Kleanthes Grohmann</td>
<td>Michael Kenstowicz</td>
</tr>
<tr>
<td>Andries Coetzee</td>
<td>Patrick Grosz</td>
<td>Ezra Keshet</td>
</tr>
<tr>
<td>Cleo Condoravdi</td>
<td>Martin Hackl</td>
<td>Jieun Kiae</td>
</tr>
<tr>
<td>Jessica Coon</td>
<td>Valentine Hacquard</td>
<td>Min-Joo Kim</td>
</tr>
<tr>
<td>Jeroen van Craenenbrock</td>
<td>Daniel Hall</td>
<td>Wendell Kimper</td>
</tr>
<tr>
<td>Luka Crnič</td>
<td>Claire Halpert</td>
<td>Peter Klecha</td>
</tr>
<tr>
<td>Roberta D’Alessandro</td>
<td>Michael Hamilton</td>
<td>Hilda Koopman</td>
</tr>
<tr>
<td>Lisa Davidson</td>
<td>Chung-hye Han</td>
<td>Marjo van Koppen</td>
</tr>
<tr>
<td>Kathryn Davidson</td>
<td>Gunnar Hansson</td>
<td>Hans van de Koot</td>
</tr>
<tr>
<td>Henry Davis</td>
<td>Heidi Harley</td>
<td>Jaklin Kornfilt</td>
</tr>
<tr>
<td>Veneeta Dayal</td>
<td>Jeremy Hartman</td>
<td>Natasha Korotkova</td>
</tr>
<tr>
<td>Amy Rose Deal</td>
<td>Stephanie Harvey</td>
<td>Hadas Kotek</td>
</tr>
<tr>
<td>Hamida Demirdache</td>
<td>Fabian Heck</td>
<td>Angelika Krafzer</td>
</tr>
<tr>
<td>Marcel den Dikken</td>
<td>Jeff Heinz</td>
<td>Manfred Krifka</td>
</tr>
<tr>
<td>Ashwini Deo</td>
<td>Robert Henderson</td>
<td>Ivona Kučerová</td>
</tr>
<tr>
<td>Michael Diercks</td>
<td>Elena Herburger</td>
<td>Jeremy Kuhn</td>
</tr>
<tr>
<td>Brian Dillon</td>
<td>Caroline Heycock</td>
<td>Leland Kusmer</td>
</tr>
<tr>
<td>Jenny Doetjes</td>
<td>Anke Himmelreich</td>
<td>Kiyomi Kusumoto</td>
</tr>
<tr>
<td>Edit Doron</td>
<td>Ken Hiraïwa</td>
<td>Nicholas LaCara</td>
</tr>
<tr>
<td>Elan Dresher</td>
<td>Aron Hirsch</td>
<td>Howard Lasnik</td>
</tr>
<tr>
<td>Alex Drummond</td>
<td>Vera Hohaus</td>
<td>Daniel Lassiter</td>
</tr>
<tr>
<td>Paul Elbourne</td>
<td>Anders Holmberg</td>
<td>Sven Lauer</td>
</tr>
<tr>
<td>Emily Elfner</td>
<td>Vincent Homer</td>
<td>Paul Law</td>
</tr>
<tr>
<td>Patrick Elliot</td>
<td>Julia Horvath</td>
<td>Winfried Lechner</td>
</tr>
<tr>
<td>David Embick</td>
<td>Hsing-Lun Huang</td>
<td>Julie Anne Legate</td>
</tr>
<tr>
<td>Sam Epstein</td>
<td>Elizabeth Hume</td>
<td>Theodore Levin</td>
</tr>
<tr>
<td>Kai von Fintel</td>
<td>Tim Hunter</td>
<td>Lisa Levinson</td>
</tr>
<tr>
<td>Edward Flemming</td>
<td>Sabine Iatridou</td>
<td>Diane Lillo-Martin</td>
</tr>
<tr>
<td>Danny Fox</td>
<td>Anton Ingason</td>
<td>Suzi Lima</td>
</tr>
<tr>
<td>Lyn Frazier</td>
<td>Tania Ionín</td>
<td>Aniko Lipták</td>
</tr>
<tr>
<td>Naoki Fukui</td>
<td>Rodica Ivan</td>
<td>Terje Lohndal</td>
</tr>
<tr>
<td>Jon Gajewski</td>
<td>Gaja Jarosz</td>
<td>Ania Lubowicz</td>
</tr>
<tr>
<td>Gillian Gallagher</td>
<td>Peter Jenks</td>
<td>Giorgio Magri</td>
</tr>
<tr>
<td>Doreen Georgi</td>
<td>Karen Jesney</td>
<td>Anoop Mahajan</td>
</tr>
<tr>
<td>Maria Giavazzi</td>
<td>Alana Johns</td>
<td>Alec Marantz</td>
</tr>
<tr>
<td>Alexander Göbel</td>
<td>Kyle Johnson</td>
<td>Diane Massam</td>
</tr>
<tr>
<td>Matt Gordon</td>
<td>Arsalan Kahlmeyipour</td>
<td>Eric Mathieu</td>
</tr>
<tr>
<td>Maria Gouskova</td>
<td>Elsi Kaiser</td>
<td>Lisa Matthewson</td>
</tr>
<tr>
<td>Martina Gračanin-Yüksek</td>
<td>Laura Kalin</td>
<td>Ora Matushansky</td>
</tr>
</tbody>
</table>
Clemens Mayr
Jim McCloskey
William McClure
Thomas McFadden
Laura McPherson
Jon Ander Mendia
Paula Menéndez-Benito
Mythili Menon
Jason Merchant
Troy Messick
Marie-Christine Meyer
Jeff Mielke
Line Mikkelsen
Shigeru Miyagawa
Claire Moore-Cantwell
Marcin Morzycki
Keir Moulton
Gereon Müller
Andrew Murphy
Neil Myler
Kimiko Nakanishi
Ad Neeleman
Andrew Nevins
Heather Newell
Andreea Nicolae
Jon Nissenbaum
Mark Norris
Jairo Nunes
David Odden
Edgar Onea
Marc van Oostendorp
Dennis Ott
Jason Overfelt
William Oxford
Roumyana Pancheva
Yangsook Park
Pritty Patel-Grosz
Ileana Paul
Waltraud Paul
Orin Percus
David Pesetsky
Colin Phillips
Maria Polinsky
Ethan Poole
Paul Portner
Eric Potsdam
Omer Preminger
Mike Putnam
Eric Raimy
Gillian Ramchand
Kyle Rawlins
Sophie Repp
Jessica Rett
Milan Rezac
Keren Rice
Norvin Richards
Marc Richards
Elizabeth Ritter
Ian Roberts
Maribel Romero
Johan Rooryck
Aynat Rubinstein
Hotze Rullmann
Joseph Sabbagh
Ken Safir
Craig Sailor
Mamoru Saito
Andrés Pablo Salanova
Martin Salzmann
Uli Sauerland
Patricia Schneider-Zioga
Erik Schoorlemmer
Bernhard Schwarz
Florian Schwarz
Roger Schwarzschild
Peter Sells
Yael Sharvit
Michelle Sheehan
Junko Shimoyama
Ivy Sichel
Halldór Sigurðsson
Tal Siloni
Alexandra Simonenko
Jennifer Smith
William Snyder
Hooi Ling Soh
Stephanie Solt
Peggy Speas
Dominique Sportiche
Jon Sprouse
Adrian Staub
Sverre Stausland Johnsen
Linnaea Stockall
Tim Stowell
Patrycja Strycharczuk
Yasutada Sudo
Sandhya Sundaresan
Peter Svenonius
Rint Sybesma
Kristen Syrett
Kriszta Szendrői
Tarald Taraldsen
Gary Thom
Höskuldur Thráinsson
Lyn Tieu
Ida Toivonen
Satoshi Tomioka
Judith Tonhauser
Maziar Toosarvandani
Nina Topintzi
Lisa Travis
Coppe van Urk
Guido Vanden Wyngaer
Luis Vicente
Matt Wagers
Michael Wagner
Rachel Walker
Andrew Weir
Philipp Weisser
Alexis Wellwood
Colin Wilson
Martina Wiltshire
Jim Wood
Rebecca Woods
Ellen Woolford
Susi Wurmbrand
Ming Xiang
Yimei Xiang
James Yoon
Masaya Yoshida
Jeremy Zehr
Hedde Zeijlstra
Ede Zimmermann Malte Zimmermann
Eva Zimmermann Jan-Wouter Zwart

Ethan Poole & Rodica Ivan
On behalf of the NELS 47 Organizing Committee
A brief history of NELS

John Jensen & Lisa Reed

The North East Linguistic Society, originally known as the New England Linguistic Society, held its first meeting at the Massachusetts Institute of Technology (MIT) on November 7th, 8th, and 9th, 1970. The original meeting of NELS attracted not only the expected audience from the northeastern United States, but also an unexpectedly large number of participants from eastern Canada. For this reason, at the business meeting of NELS 1, Professor David Lightfoot (at that time a professor of linguistics at McGill University) made the proposal that the conference expand the geographical range of hosting institutions to include eastern Canada. This proposal was immediately accepted and accounts for the change in title of the conference. Since NELS 1 in 1970, NELS has further expanded the geographical pool of its participants, although the traditional geographical base for hosting institutions has remained unchanged. NELS now annually draws speakers and participants from the entire United States, Canada, and Europe. It has been hosted by the following institutions, listed in chronological order.

NELS 1 (1970) MIT
NELS 2 (1971) McGill University
NELS 3 (1972) University of Massachusetts Amherst
NELS 4 (1973) Brown University
NELS 5 (1974) Harvard University
NELS 6 (1975) Université du Québec à Montréal
NELS 7 (1976) MIT
NELS 8 (1977) University of Massachusetts Amherst
NELS 9 (1978) The City University of New York
NELS 10 (1979) University of Ottawa
NELS 11 (1980) Cornell University
NELS 12 (1981) MIT
NELS 13 (1982) Université du Québec à Montréal
NELS 14 (1983) University of Massachusetts Amherst
NELS 16 (1985) McGill University
NELS 17 (1986) MIT
NELS 18 (1987) University of Toronto
NELS has always been and remains the most prestigious conference in theoretical linguistics hosted in its geographical area and is among the most highly respected in the field at large. (Conferences in theoretical linguistics of comparable quality, hosted in different geographical areas, include the Chicago Linguistic Society, the West Coast Conference on Formal Linguistics (WCCFL), and the Generative Linguistics in the Old World (GLOW).) The papers presented at NELS are of a consistently high calibre, not only because of the large number of abstracts received, but also because of the anonymous reviewing process, conducted by leading figures in the field. The papers presented at NELS have appeared in published form since NELS 5, and are frequently cited in refereed journals of the field. Since NELS 11, the proceedings have been published by the Graduate Linguistics Student Association at the University of Massachusetts Amherst.

From its beginning, NELS has been organized by Linguistics graduate students of the hosting institution, though one or two faculty members frequently lend assistance. As a result, every effort is made by the organizing committee to ensure that a significant number of speakers are graduate students. This tradition has been maintained principally because it
provides graduate students who are relatively new in the field with a unique opportunity to meet and discuss their work with established researchers from other universities.
Table of Contents
Volume One

Klaus Abels & Veneeta Dayal
On the Syntax of Multiple Sluicing 1

David Adger, Alex Drummond, David Hall & Coppe van Urk
Is there Condition C reconstruction? 21

Jeffrey Adler & Jesse Zymet
Irreducible parallelism in phonology 31

Diogo Almeida & Matthew A. Tucker
The complex structure of agreement errors: Evidence from distributional analyses of agreement attraction in Arabic 45

Akihiko Arano
Multiple scrambling, headless vP-movement, and Cyclic Linearization 55

Rahul Balusu
PPI effects with an NPI/FCI in Telugu 65

William G. Bennett & Natalie DelBusso
Typological consequences of ABCD constraint forms 75

Elizabeth Bogal-Allbritten & Andrew Weir
Sentential and possibly subsentential modification: the ambiguity of Collins conjunctions 89

Ksenia Bogomolets, Paula Fenger & Adrian Stegovec
Arapaho, the English of Algonquian: V-C movement and its effects on agreement paradigms 103

Nora Boneh & Léa Nash
The end of the path for the selected vs. non-selected distinction? 117
Kenyon Branan
Dependent Case as a licenser in Kikuyu 127

Elena Callegari
A Focus-Driven Analysis of Topic Typology and Distribution 137

Isabelle Charnavel
Perspective on Causal Clauses 147

Isabelle Charnavel & Dominique Sportiche
Simplex yet Local 157

Emily Clem
Two types of binding: Evidence from Tswefap pronominals 173

Cleo Condoravdi & Sven Lauer
Conditional imperatives and endorsement 185

Jessica Coon, Stefan Keine & Michael Wagner
Hierarchy effects in copular constructions: The PCC corner of German 205

Luka Crnić
More on less 215

Christopher Davis
Evidentiality, Maximize Presupposition, and Gricean Quality in Okinawan 229

Virginia Dawson
Optimal clitic placement in Tiwa 243

Amy Rose Deal
Covert hyperraising to object 257

Ömer Demirok
Free Relatives and Correlatives in Wh-in-situ 271

Alex Drummond & Junko Shimoyama
Adverbial comparatives as event modifiers 285

Daniel Edmiston & Eric Potsdam
Linearization at PF: Evidence from Malagasy Extraposition 295
Maria Esipova

Contrast and distributivity in the semantics of alternation
Volume Two

Cara Feldscher
States and degrees: additive again 1

Clarissa Forbes
Persistent ergativity and split-absolutive agreement in Gitksan 11

Guilherme D. Garcia
Grammar trumps lexicon: Typologically inconsistent weight effects are not generalized 25

Jeffrey Geiger & Ming Xiang
“Context can!”: Contextual accommodation in exophoric and anaphoric VP ellipses 35

Vera Gor
Acceptable but Ungrammatical in Comparison: Overriding Principle C Violations in Comparatives 45

Scott Grimm & Beth Levin
Artifact Nouns: Reference and Countability 55

Emily Hanink & Ryan Bochnak
Factivity and two types of embedded clauses in Washo 65

Ken Hiraiwa
Labeling Roots: Indeterminates and Particles 79

Anton Karl Ingason & Einar Freyr Sigurðsson
The interaction of adjectival structure, concord and affixation 89

Michela Ippolito
Indefinite Pronouns 99

Peter Jenks & Hannah Sande
Dependent accusative case and caselessness in Moro 109

Laura Kalin
Dropping the F-bomb: An argument for valued features as derivational time-bombs 119
Nayoun Kim, Kathleen Hall & Masaya Yoshida
Grammatical Illusions in Locative Constructions 133

Wendell Kimper
Alien phonotactics: What can Science Fiction tell us about implicit knowledge? 143

Hadas Kotek
Intervention effects arise from scope-taking across alternatives 153

Maria Kouneli
The morphological expression of nominal number in Kalenjin 167

Margaret Kroll & Deniz Rudin
Identity and Interpretation: Syntactic and Pragmatic Constraints on the Acceptability of Sluicing 177

William W. Kruger
Free Merge, Agree, & Phase-Cancellation: An Account of (Anti-)That-Trace Effects 191

Imke Kruitwagen, Eva B. Poortman & Yoad Winter
Reciprocal Verbs as Collective Predicate Concepts 201

Ivona Kučerová
On labeling of DP coordinations and the lack of φ-feature resolution in syntactic Agree 211

Petr Kusliy
On Incompatibilities Between Tenses and Temporal Adverbs in English, Japanese, and Russian 221

Jess H.-K. Law & Kristen Syrett
Experimental evidence for the discourse potential of bare nouns in Mandarin 231

Theodore Levin
Distinguishing object agreement and clitic doubling in Noun Incorporation constructions 241

Shih-Yueh Jeff Lin
Ulivelivek Wh1 as a Wh-pseudocleft 251
Ora Matushansky & Joost Zwarts
Making space for measures 261

Marie-Christine Meyer & Uli Sauerland
Covert Across-The-Board Movement Revisited: Free Choice and the Scope of Modals 275

Neil Myler
Some Predictions of a Suppletive Allomorphy Approach to Complex Copula Systems 289

Léa Nash
Person split and pronominal asymmetries 303

Yining Nie
Why is there NOM-NOM and ACC-ACC but no ERG-ERG? 315

Ellen O’Connor
The (Accidental) Ambiguity of Inversion Illusions 329

Hiromune Oda
Two types of the Coordinate Structure Constraint and rescue by PF deletion 343
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatiana Philippova</td>
<td>Ellipsis in the phrasal comparative: evidence from correlate constraints</td>
<td>1</td>
</tr>
<tr>
<td>Yihui Quek & Aron Hirsch</td>
<td>Severing focus form and meaning in Standard and Colloquial Singapore English</td>
<td>15</td>
</tr>
<tr>
<td>Ezer Rasin</td>
<td>Two types of resumptive pronouns: a minimal account of Hebrew interpretive asymmetries</td>
<td>25</td>
</tr>
<tr>
<td>Maribel Romero, Anja Arnhold, Bettina Braun & Filippo Domaneschi</td>
<td>Negative Polar Question Types in English</td>
<td>35</td>
</tr>
<tr>
<td>Vincent Rouillard & Bernhard Schwarz</td>
<td>Epistemic Narrowing from Maximize Presupposition</td>
<td>49</td>
</tr>
<tr>
<td>Andrés Pablo Salanova & Javier Carol</td>
<td>The Guaraní mirative evidential and the decomposition of mirativity</td>
<td>63</td>
</tr>
<tr>
<td>Martin Salzmann</td>
<td>Displaced morphology in German. An argument for post-syntactic morphology</td>
<td>77</td>
</tr>
<tr>
<td>Hannah Sande</td>
<td>Process morphology in a realizational theory</td>
<td>91</td>
</tr>
<tr>
<td>Nagarajan Selvanathan</td>
<td>Reflexive Connectivity in Copular Clauses and Identity Functions</td>
<td>105</td>
</tr>
<tr>
<td>Caitlin Smith</td>
<td>Harmony Triggering as a Segmental Property</td>
<td>117</td>
</tr>
<tr>
<td>Brian W. Smith & Claire Moore-Cantwell</td>
<td>Emergent Idiosyncrasy in English comparatives</td>
<td>127</td>
</tr>
<tr>
<td>Richard Stockwell</td>
<td>VP ellipsis with symmetrical predicates</td>
<td>141</td>
</tr>
</tbody>
</table>
Shoichi Takahashi & Akane Ohtaka
A lacuna in adjunct extraposition 155

Annemarie van Dooren
Dutch must more structure 165

Coppe van Urk
Mixed chains in Dinka: Resumption as a last resort 175

Anna Volkova
The architecture of reduced relative clauses: evidence from reflexives 189

Andreas Walker
Similarity and high and low readings in counterfactual donkey sentences 199

Andrew Weir
DP-be-CP constructions and the licensing of clausal ellipsis 209

Philipp Weisser
Why there is no such thing as Closest Conjunct Case 219

Alexander Williams & Jeffrey Jack Green
Why control of PRO in rationale clauses is not a relation between arguments 233

Lindley Winchester
Morphosyntactic Features & Contextual Allomorphy: Evidence from Modern Standard Arabic 247

Yimei Xiang & Alexandre Cremers
Mention-some readings of plural-marked questions: Experimental evidence 261

Yu'an Yang & Ying Liu
Exhaustivity and at-issueness: Evidence from L1 Acquisition of Mandarin 275

Jeremy Zehr, Aron Hirsch, Hezekiah Akiva Bacovcin & Florian Schwarz
Priming local accommodation of hard triggers in disjunction 285
Eva Zimmermann
Multiple reduplication as non-segmental affixation: A case study from Nuuchahnulth

Sam Zukoff
Arabic Nonconcatenative Morphology and the Syntax-Phonology Interface
Mention-some readings of plural-marked questions: Experimental evidence

Yimei Xiang1 & Alexandre Cremers2

1Harvard University, 2ILLC, Universiteit van Amsterdam

1. What is mention-some?

In most daily conversations, a question admits only an exhaustive answer. For example, to properly answer (1), the addressee needs to specify all the attendants to the party, as in (1a). If the addressee doesn’t have enough knowledge of this question and can only provide a non-exhaustive answer, then she needs to indicate the incompleteness of her answer. For instance, she can mark her answer with a prosodic rise-fall-rise contour (indicated by ‘...’), as in (1b). We call (1a) a complete answer while (1b) a partial answer. If a partial answer is not properly marked, such as taking a falling tone as in (1c) (indicated by \'), it gives rise to an undesired exhaustivity inference.

(1) Who went to the party?
 (w: Only John and Mary went to the party.)
 a. John and Mary.
 b. John did .../ \(≈\) I don’t know who else did.
 c. #John did\. \(≈\) Only John did.

But, ◇-questions (i.e., questions with a possibility modal) admit not only exhaustive answers but also non-exhaustive answers (Groenendijk & Stokhof 1984). For instance, (2) can be naturally addressed by specifying one or all of the accessible coffee stores, as in (2a) and (2b)/(2c), respectively. Moreover, while being non-exhaustive, the answer (2a) does not need to carry an ignorance mark. In other words, (2a) does not yield an exhaustivity inference even if taking a falling tone. We call answers like (2a) mention-some answers, and answers like (2b)/(2c) mention-all answers. Questions admitting mention-some answers are called mention-some questions.

We wish to thank audiences at NELS 47 and the Inquisitive Semantics seminar at ILLC, University van Amsterdam. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.313610 and was supported by ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-0087 IEC.

© 2017 by Yimei Xiang & Alexandre Cremers
Andrew Lamont & Katerina Tetzloff (eds.): NELS 47, Vol. 3, 261–274.
GLSA Amherst.
(2) Where can we get coffee?

\(w: \text{There are only two accessible coffee stores: A and B}\)

a. Store A.\(\not\Rightarrow \text{We can get coffee at Store A only.}\)

b. Store A and Store B.

c. Store A or Store B.

Crucially, mention-some is a very special form of non-exhaustivity: a mention-some answer specifies exactly one of the possible options (Xiang 2016b: ch. 2). In replying to a ◊-question, if an answer provides multiple choices and is not ignorance-marked, it is interpreted exhaustively, as shown in (3b). Hence, mention-some is more precisely mention-one.

(3) Who can chair the committee?

a. Andy.\(\not\Rightarrow \text{Only Andy can chair.}\)

b. Andy and Billy.\(\cong \text{Only Andy and Billy can chair.}\)

Nevertheless, if a ◊-question is plural-marked as in (4b), (viz., the \(wh\)-complement is morphologically plural-marked), mention-some readings seem to become unavailable.

(4) a. Where can we get coffee? (\(\text{\small OK}\) mention-some, \(\text{\small OK}\) mention-all)

\(\cong \text{‘Tell me one/every place where we can get coffee.’}\)

b. At which places can we get coffee? (#mention-some, \(\text{\small OK}\) mention-all)

\(\cong \text{‘Tell me #one/every place where we can get coffee.’}\)

This paper investigates the following two issues on the availability of mention-some. First, what licenses mention-some readings in number-neutral ◊-questions? Second, what blocks mention-some readings in plural-marked ◊-questions, and are there exceptions?

2. Competing views on the distribution of mention-some

Xiang (2016b: ch. 2) classifies approaches to mention-some into three groups:

(5) a. \textbf{Pragmatic approaches} (Groenendijk & Stokhof 1984; van Rooij 2004 a.o.): At the semantic level, complete answers must be exhaustive. Mention-some answers are special partial answers that are sufficient for the conversational goal behind the question.

b. \textbf{Post-structural approaches} (Beck & Rullmann 1999; George 2011: ch. 2): At the semantic level, all questions are ambiguous between a mention-some and an exhaustive reading, which are derived via different operations on question roots. Their distributions are only restricted by pragmatic factors.

c. \textbf{Structural approaches} (George 2011: ch. 6; Fox 2013, 2015; Xiang 2016c,b): The mention-some/mention-all ambiguity comes from a structural variation within the question nucleus. ◊-questions admit mention-some due to the presence of an existential modal.
This three-way distinction can be broken down into two core issues: (i) whether mention-some readings are derived at the semantic level, and (ii) whether the distribution of mention-some is restricted by any grammatical factors.

(6) Summary of current lines of approaches on mention-some (Xiang 2016b: ch. 2)

<table>
<thead>
<tr>
<th></th>
<th>Pragmatic</th>
<th>Post-structural</th>
<th>Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td>... semantically licensed?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>...grammatically restricted?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Both pragmatic approaches and post-structural approaches pursue a **pragmatic view** on the distribution of mention-some: the distribution of mention-some is purely determined by pragmatic factors. This view predicts that mention-some is available only if a non-exhaustive answer suffices for the conversational goal of the question (Groenendijk & Stokhof 1984; van Rooij 2004 a.o.). For example, for the ◀-question in (2), if the conversational goal is to find a place to get some coffee, then naming one accessible coffee place is sufficient, which therefore licenses the mention-some reading. If the conversational goal is to investigate the local coffee market, then (2) admits only a mention-all reading. Likewise, a non-◇-question like “who knows Python?” may take a mention-some reading if the goal is just to find someone to help with a Python problem, and it takes a mention-all reading if the goal is to know the programming skills of a group of candidates.

From the observation that mention-some is not restricted to matrix questions, but can also be observed with embedded ◀-wh-constructions (as in the indirect questions John knows where we can get coffee, and the free relative in John went to where we can get coffee), post-structural approaches argue that a mention-some reading must be available at the semantic level. Hence, post-structural approaches are commonly called “semantic approaches” in the literature. Nevertheless, post-structural approaches predict no grammatical constraints on the distribution of mention-some. For example, Beck & Rullmann (1999) assume that the root denotation of a question is unambiguously a Hamblin-Karttunen intension, and that a question takes mention-some iff the employed answerhood operator has an existential quantificational force.

(7) a. \(\text{ANS}_1(Q)(w) = \bigcap \{ p : Q(w)(p) \land p(w) \} \) (for mention-all)
 b. \(\text{ANS}_3(Q)(w) = \lambda p_1 \ldots p_3. \exists p_4 \{ p_1[w] \land Q(w)(p) \land p(w) \} \) (for mention-some)

Since post-structural approaches derive mention-some through generic operations that can apply to any question (e.g., employing the ANS₃-operator), they predict a systematic mention-some/mention-all ambiguity, which can only be resolved by pragmatic considerations.

Contrary to pragmatic approaches and post-structural approaches, structural approaches pursue a **grammatical view** on the distribution of mention-some: the distribution of mention-some is primarily grammatically restricted. This view relies on two major steps. First, Fox (2013) weakens the notion of completeness. Contra the traditional view that only the strongest true answer is complete (Dayal 1996), Fox proposes that a true answer is complete as long as it is max-informative, that is: it is a member of the Hamblin set and is not asymmetrically entailed by any true proposition in this set. This move allows non-exhaustive answers to be complete answers, when a questions has multiple complete true answers.
answers. A question takes a mention-some reading if it can have multiple max-informative true answers.

\[
\text{ANS}_{\text{fox}}(Q)(w) = \{ p : w \in p \in Q \land \forall q[w \in p \rightarrow p \not\subset q] \}
\]

Second, structural approaches ascribe the mention-some/mention-all ambiguity to minimal structural variations within the question nucleus (i.e., the IP part of the logical form of a question). The actual derivations are not crucial for this paper. The core consequence is that, for structural approaches, the form of the question nucleus (especially whether a possibility modal is present) is the primary factor affecting the distribution of mention-some.

To decide between the two competing views regarding the distribution of mention-some, we can test the availability of mention-some in questions with and without a possibility modal under the same “mention-some goal” (i.e., a conversational goal that can be sufficed by a mention-some answer). The pragmatic view predicts that under the same mention-some goal, \(\diamond\)-questions and non-\(\diamond\)-questions are equally likely to take mention-some readings. In contrast, the grammatical view predicts that under the same mention-some goal, \(\diamond\)-questions are more likely to take mention-some than non-\(\diamond\)-questions.

3. Mention-some in plural-marked \(\diamond\)-questions

What blocks mention-some readings in (at least some of the) plural-marked \(\diamond\)-questions? Comorovski (2006: 39) claims that mention-some is unavailable if the \(\text{wh}\)-phrase is \(\text{D}\)-linked (i.e., the \(\text{wh}\)-phrase is of a complex form “which NP”, which typically requires a contextually salient domain of quantification, see Pesetsky 1987). This claim seems to be consistent with the following data:

\[
\begin{align*}
\text{(9)} \quad \text{a. Where can we get coffee?} & \quad \text{(OK mention-some, OK mention-all)} \\
\text{b. At which places can we get coffee?} & \quad \text{(#mention-some, OK mention-all)} \\
\text{c. At which place can we get coffee?} & \quad \text{(mention-some = mention-all)} \\
\end{align*}
\]

\(\Rightarrow\) There is only one place where we can get coffee.

\[1\] For example, Fox (2013) assumes that the \(\text{wh}\)-trace \(X\) has a covert phrase-mate EACH, and that the scope ambiguity of \([X \text{ EACH}]\) relative to the possibility modal is responsible to the mention-some/mention-all ambiguity. Xiang (2016b: ch. 2) provides two ways to capture the mention-some/mention-all ambiguity. One way, which captures the contrast between the mention-some answer (2a) and the conjunctive mention-all answer (2b), is based on the scope ambiguity of the second-order \(\text{wh}\)-trace (interpreted as a variable of type \(\langle \text{et}, \text{t} \rangle\)) relative to the possibility modal; the other way, which captures the contrast between the mention-some answer (2a) and the disjunctive mention-all answer (2c), is based on the optional presence of a covert operator that has a meaning akin to the Mandarin particle DOU above the possibility modal.

\[2\] As pointed to us by Matthijs Westera (p.c.), \(\diamond\)-questions could be used more frequently in conversations with a mention-some goal, and this may bias them towards a mention-some reading when the context does not fully specify the conversational goal. Such a hypothesis would lead pragmatic approaches to make predictions more in line with the grammatical view. We tried to set a clear goal in the experiments we present below, but this objection seems very hard to fully dismiss.
Nevertheless, the unavailability of mention-some in (9c) is due to an independent reason: the singular wh-complement has a uniqueness presupposition (Srivastav 1991), which collapses mention-some and mention-all.

Alternatively, Xiang (2015), Xiang (2016b: ch. 3) and Dayal (2017: ch. 3) argue that the blocking of mention-some in plural-marked questions comes from the fact that a plural-marked question expects an answer that names a non-atomic individual. In particular, Xiang analyzes this plurality requirement as an anti-presupposition: first, in spirit of Maximize Presupposition (Heim 1991), a plural-marked question anti-presupposes that the corresponding singular-marked question is undefined (a la Sauerland et al. 2005); second, in spirit of question-answer congruence, a proper answer of a plural question needs to entail the anti-prespupposition of this question. The plurality-based view predicts that the availability of mention-some for a plural-marked wh-question depends on the type of predicate it combines with, as illustrated by the following minimal pair:

(10) (Context: The committee should have only one chair but multiple members.)
 a. Which professors can chair the committee? (#mention-some, OK mention-all)
 # Andy can chair the committee.
 b. Which professors can form the committee? (OK mention-some, OK mention-all)
 Andy and Billy can form the committee.

Provided co-chair is disallowed, the question (10a) rejects mention-some because each expected mention-some answer names exactly one atomic individual (e.g., Andy) who can be the committee chair. In contrast, with the collective predicate can form the committee, which can take non-atomic arguments, the question (10b) admits a mention-some reading because a mention-some answer names the sum of a group of individuals (e.g., Andy ⊕ Billy) who together can form the committee, thus satisfying the plurality requirement.

4. Experiment 1

4.1 Goal and design

The goal of this first experiment was to test the effects of the following two factors on the availability of mention-some readings for questions with collective predicates: presence/absence of a possibility modal and the from of the wh-item (bare wh-words like who vs. complex phrases of the form "which-NPPl"). We used indirect questions because they allowed us to test the exhaustiveness of a question using a simple truth-value judgment task (Cremers & Chemla 2016; Phillips & George 2016). We used the question-embedding verb remember, which sounded more natural than know in the tested context. The background story ensured that the presupposition of past knowledge from remember was satisfied. Moreover, it set up a clear "mention-some" conversational goal, and ensured that the goal be the same for all questions, minimizing the role of pragmatic factors. Questions with collective predicates (such as which children can lead the dance) are crucial for this study, because they can have mention-some answers naming a sum of individuals.
Our experimental settings required participants to compare the facts regarding a question to an agent’s knowledge of these facts. Concretely, this means that they would have to compare two sets of sets. The main challenge was therefore to make it easy for participants to quickly grasp such complex situations and to evaluate the truth of a knowledge-attribution. Our solution to this problem can be conceptualized as follows: a background story established that a pair of children can lead the dance iff they have a piece of clothing in common. This way, we can represent the extension of the collective predicate can lead the dance in a single picture, without having to list all the possible pairs of children who can lead the dance together. For example, the picture in (11) represents in a concise manner a situation in which two pairs of children can lead the dance, namely Ann with Chloe (who wear the same hat) and Bill with Chloe (who wear the same scarf). To prevent a superficial strategy which would have consisted in visually comparing the depictions of reality and of the memory of the agent, Mary’s knowledge state was described in words rather than using the same type of picture.

(11) Example of a target item in Experiment 1

\[
\begin{array}{c}
\text{How children are dressed up:} \\
\begin{array}{cccc}
\text{Ann} & \text{Bill} & \text{Chloe} & \text{Diana} \\
\end{array} \\
\text{Mary’s memory:} \\
\text{Bill and Chloe wear the same scarf, Chloe wears a hat.} \\
\text{Therefore Bill and Chloe can lead the dance.} \\
\end{array}
\]

“Mary remembers which children can lead the dance”

4.2 Methods and Material

4.2.1 Instructions

The instructions introduced the following background story:

A party is organized at the school. It will begin with a bal, and Mary is in charge of choosing two children who will lead the dance. The director of the school was very clear on one point: the children leading the dance should have an accessory in common. There is however one exception: if a child is wearing a jester hat, he or she can lead the dance alone.
The sentence about jester hats played no role for target items. It was used to build control items with atomic mention-some answers (see below). The instructions also presented two example items (one clearly true, and one clearly false).

4.2.2 Stimuli

All items involved four children, Ann, Bill, Chloe and Diana, who were always presented in the same order. Each child wore one, two, or no accessory, chosen from 3 simple hats, a scarf, and a bowtie. For target items, one randomly chosen child wore 2 accessories (one headwear and one neckwear), another child had the same headwear but no neckwear, a third child the same neckwear but no headwear, and the last child wore no accessory at all. Hence, in the target items, there were always two pairs of children sharing an accessory, and who could thus lead the dance together. Which child wore the two accessories, headwear only, and neckwear only, was pseudo-randomized.

We manipulated three factors. The first two determined the form of the embedded question in the target sentence: Wh TYPE: neutral (who) versus plural (which children) and MODAL: modalized (can lead the dance) versus plain (have an accessory in common). The third factor, SITUATION, specified Mary’s memory as to who wore what: T (True: Mary correctly remembered who wore what), UA (Under-affirming: Mary’s memory was incomplete; Mary forgot one of the accessories worn by the children, and hence she missed one possible pair of dance leaders), OA (Over-affirming: Mary thought that one of the children wore an additional accessory, which was common with another child. Therefore, she falsely believed that one additional pair of children could lead the dance together), and F (False: all of Mary’s memories were off). The different situations make different readings of the target sentence true or false, as summarized in (12):

(12) Reading types and the expected truth values

	T	UA	OA	F
Mention-all				
Strongly/Intermediately exhaustive	1	0	0	0
Weakly exhaustive	1	0	1	0
Mention-some				
FA-sensitive mention-some	1	1	0	0
FA-insensitive mention-some	1	1	1	0

Crucially for this study, the UA situation distinguishes between exhaustive/mention-all and mention-some. Mary’s memory in the UA situation was incomplete but involved no false belief. The OA situation distinguishes between false answer (FA-)sensitive readings and FA-insensitive readings. For example, for mention-all readings, the OA situation distinguishes between strongly/intermediately exhaustive (Groenendijk & Stokhof 1984) and weakly exhaustive (Karttunen 1977) readings, among which the former are FA-sensitive and require the belief holder to have no false belief relevant to the embedded question. This sub-categorization also applies to mention-some readings (George 2013, a.o.).

This design led to $2 \times 2 \times 4$ conditions. T and F situations were repeated three times each, while UA and OA were repeated six times each, for a total of 72 target items.
Right after the instructions, participants were presented with four training items. In case of mistakes, participants received detailed feedback. The feedback screen was displayed for 10s in order to let participants read it carefully, as well as to encourage them to pay more attention. The transition to the experimental phase was not indicated.

In addition to the 72 targets, the experimental phase contained 18 “Jester hat” controls which aimed to test for mention-some readings with atomic responses. When a child wore a jester hat, he or she was allowed to lead the dance alone. This allowed us to build situations in which the question “Who can lead the dance?” had mention-some answers based on atomic individuals. If the plurality-based view (Xiang 2015, 2016b; Dayal 2017) is correct, “Which children can lead the dance?” should reject mention-some in these situations. The jester-hat controls were built on a 3 (WH TYPE- MODAL combination) × 2 (SITUATION) sub-design. Each combination of conditions was repeated three times, for 18 items in total. Since we were mainly interested in the interaction between can and which-NP PL, we dropped the neutral-plain combination but kept the other three WH TYPE-MODAL combinations. To focus on the distribution of mention-some, we tested only two situations: T and UA. All pictures contained two children wearing a jester hat, so that there were two true atomic mention-some answers (each child can lead the dance) and one true non-atomic mention-some answer (the two children can lead the dance together). The plain predicate was wear a jester hat, and the modalized predicate was again can lead the dance.

Finally, we included fillers with declarative complements. Half of the fillers were built with a modalized predicate, and half with a plain predicate. Each type of complement appeared 6 times as a true filler, and 6 times as a false filler, for a total of 24 items.

4.2.3 Participants

We recruited 30 participants on Amazon’s Mechanical Turk, and paid $1.80 for each. All reported being native speakers of English. Their age ranged from 19 to 73 year old (mean: 38). Five participants were removed from the analyses because their error rate was one standard deviation above the mean (threshold: 33.5%).

4.3 Results and discussion

The results on target items are presented in (13a). The fastest and slowest 1% responses were dropped. The data was analyzed with mixed-effects logit models. The random effects structure for all models was built following the recommendations of Bates et al. (2015). The significance of fixed effects was assessed by comparison with models without the corresponding fixed effects (Levy 2014). We fitted a model on UA targets with WH TYPE, MODAL and their interaction as fixed effects. We observed a significant effect of MODAL ($\chi^2(1) = 41, p < .001$), but no effect of WH TYPE ($\chi^2(1) = 0.61, p = 0.44$) and, crucially, no interaction ($\chi^2(1) = 0.60, p = 0.44$). This shows that mention-some readings are more readily available when the embedded question contains a possibility modal, and that who and which-NP PL had very similar behaviors with respect to mention-some.
Nevertheless, if the predicate that the wh-phrase combines with is distributive, we expect a strong difference between who and which-NP_{PL}. In this case, mention-some answers should be based on atomic individuals, and mention-some readings should be observed with who-questions but not with which-questions.

We now turn to the results of the ‘Jester hat’ controls, presented in (13b). A model fitted on the three UA-conditions showed no significant effect of MODAL ($\chi^2(1) = .07, p = 0.79$) or WHTYPE ($\chi^2(1) = 0.89, p = 0.34$). If anything, the model with only WHTYPE as a predictor was slightly better than the model with only MODAL ($\Delta AIC = 0.82, \Delta BIC = 0.83$), and better than the model with both MODAL and WHTYPE as predictors ($\Delta AIC = 1.9, \Delta BIC = 5.4$). This effect seems to suggest the following: when atomic mention-some answers are possible, WHTYPE becomes an important predictor of mention-some readings, in that modalized which-questions are suddenly closer to their non-modalized counterparts than the modalized who-questions. Nevertheless, this effect was far from significant.

In short, we observed that it’s the presence of a possibility modal in the question that primarily licenses mention-some, and that the type of wh-phrase does not have a significant effect. The first result is a strong argument for the grammatical approaches (George 2011; Fox 2013; Xiang 2016b). The second is in line with Xiang (2015, 2016b) and Dayal (2017), who predict that plural questions should admit mention-some readings when the plurality requirement is satisfied.
Nevertheless, even in jester-hat controls, where mention-some answers involve atomic individuals and do not satisfy Xiang and Dayal’s plurality requirement, we still found no clear contrast between who and which-NP. This suggests a different explanation for the lack of such contrast in target conditions. Since the task was difficult, it could just be that the participants focused on the presence/absence of a modal, a contrast which is both more visible (it affect all the end of the sentence) and relevant (since modals have long been argued to play a crucial role in the availability of mention-some readings).

5. Experiment 2

5.1 Goal and design

The goal of Experiment 2 was to distinguish between two interpretations of the results from Experiment 1. We made the WHTYPE factor between-participants, so that the type of the wh-phrase remained the same across trials.

This move also allowed us to reduce the number of conditions each participant would be exposed to. We added another situation called over-denying. In this situation, Mary’s memory would be not only incomplete (like under-affirming) but also involve an explicit negative false belief. Xiang’s (2016a) experiments suggest that mention-some and mention-all knowledge attributions differed in their sensitivity to false beliefs: mention-all is more tolerant of over-affirming, while mention-some is more tolerant of over-denying. We wanted to see if this result could be replicated in a different experimental context.

5.2 Methods and Material

5.2.1 Differences with Experiment 1

Beyond making WHTYPE between-participants, the main novelty of Experiment 2 was the addition of an OD (over-denying) level to the SITUATION factor. The OD situations was nearly identical to the UA situation presented in (11), except that the description of Mary’s memory involved an explicit exhaustion: “Bill and Chloe wear the same scarf, only Chloe wears a hat. Therefore only Bill and Chloe can lead the dance.” (underlining added for clarity, but not present in actual experimental items). SITUATION thus had 5 levels now: T, UA, OA, OD, and F. The other factors were, as in Experiment 1, MODAL (2 levels, within-subject), and WHTYPE (2 levels, now between-subjects). Each T or F combination was repeated 3 times, while the other combinations were each repeated 6 times. Each participant thus saw $(2 \times 3 + 3 \times 6) \times 2 = 48$ target items.

The neutral version presented the 6 neutral-modalized jester-hat control items, while the plural version presented the 6 plural-modalized and the 6 plural-plain items. Due to a programming error, the UA jester-hat items were mistakenly phrased as OD items.

The rest of the experiment (including the instructions and the declarative controls) was identical to Experiment 1. In total, participants saw 78 items in the neutral version or 84 items in the plural version.
5.2.2 Participants

We recruited 48 participants (24 for the neutral version, 24 for the plural version), who were paid $1.90 each. All reported being native speakers of English. Their ages ranged from 21 to 58 year old (mean: 33). Twelve participants were removed from the analyses because their error rate was one standard deviation above the mean (threshold: 38.5%).

5.3 Results and Discussion

(14) Distribution of participants’ average responses on target items in Experiment 2:

The results on target items in Experiment 2 are presented in (14). We first ran the same statistical analysis as in Experiment 1, focusing on UA targets. Again, there was a clear effect of MODAL ($\chi^2(1) = 6.1, p = 0.014$) but no effect of WHTYPE ($\chi^2(1) = 1.7, p = 0.20$). Interestingly, we now observed a significant interaction between these two factors ($\chi^2(1) = 6.1, p = 0.013$): the modal had a clear effect on the neutral items but not on the plural items. In particular, modalized who-questions were even more likely to take mention-some readings than they were in Experiment 1, while which children-questions overall received lower acceptance rates in both UA conditions.

Crucially, the availability of mention-some readings with who-questions and their dependency on the presence of a modal were even clearer in Experiment 2, while which-NPPL-
questions received the same average acceptance rates in the UA conditions, but without any influence of the presence of the modal. This difference between who and which-NP_{pl} confirms our worry that their near-identical behavior in Experiment 1 was due to a confusion on the part of participants, who may have focused more on MODAL and dismissed WhTYPE.

We then ran a model on the OA and OD neutral conditions, after selecting the participants who accepted the UA condition at least 50% of the time (i.e., who had a mention-some reading). We observed a strong effect of MODAL ($\chi^2(1) = 13, p < .001$), but no main effect of SITUATION ($\chi^2(1) = 0.5, p = 0.49$) or interaction of these two factors ($\chi^2(1) = 1.9, p = 0.17$). This suggests that participants were simply more tolerant of false beliefs in modalized questions, but we did not replicate Xiang’s (2016a) findings on the asymmetry between over-affirming and over-denying. Nevertheless, this statistical analysis is clearly underpowered, since only 10 participants satisfied all criteria (i.e., not being excluded on the basis of errors, falling in the neutral condition, and accepting UA situations).

In summary, Experiment 2 replicated the results of Experiment 1 with who-questions, but we observed less clear evidence for mention-some readings with which-NP_{pl}-questions this time. In particular, unlike the case of who-questions, MODAL seemed to play little role in the case of which-NP_{pl}-questions.

6. Conclusion

First of all, our results validate the role of the possibility modal in licensing the mention-some reading of who-questions. This conclusion was the clearest one from both experiments, and it is strong evidence in favor of the grammatical view against the pragmatic view on the distribution of mention-some. Indeed, while the context remained constant, we saw that the presence of a possibility modal was necessary to license the mention-some reading of the embedded who-question.

By contrast, the availability of mention-some in which-NP_{pl}-questions was less clear. In Experiment 1, we observed no difference between modalized who-questions and modalized which-NP_{pl}-questions: in presence of a possibility modal, both types of questions gave rise to mention-some readings at the same rate. This result, on the one hand, seems to be compatible with the prediction of the analyses by Xiang (2015, 2016b) and (Dayal 2017: ch. 3): plural-marked which-questions can give rise to mention-some readings, provided there are mention-some answers naming non-atomic individuals. On the other hand, the lack of contrast in jester-hat controls suggested an alternative explanation: participants may have dismissed the variations of WhTYPE and treated all questions as who-questions. In Experiment 2, controlling for this potential confound, we observed much lower acceptance rates for UA situations in which-NP_{pl}-questions than in modalized who-questions. This observation suggests that which-NP_{pl}-questions are in fact less likely to take mention-some readings than modalized who-questions. We also observed that the acceptance rates for UA situations in which-NP_{pl}-questions were independent from whether the questions were modalized. This result supports Comorovski’s (2006) generalization (that D-linked

Note that we were not able to test situations where atomic responses are available, because of the programming error on jester-hat controls. However, given that participants made a clear distinction between the two types of WH-PHRASES on target items, this control was not crucial anymore.
wh-phrases unlicense mention-some readings), and would call for an independent mechanism of pragmatic tolerance for partial answers when they satisfy the conversation goals in order to account for residual acceptance of the UA conditions with which-NP_{PL}. Such a mechanism, which would not be sensitive to the presence of a modal or other structural factors, is needed anyway to explain the “who knows Python?” cases.

An other possibility, which potentially rescues the view of Xiang (2015, 2016b) and Dayal (2017), is that the predicate lead the dance can be interpreted either collectively or distributively, and that using a complex which-phrase favors the distributive reading:

(15) Which children can lead the dance?
 a. Collective reading
 ‘Which (groups of) children can lead the dance together?’
 b. Distributive reading
 ‘Which children can be part of a dance-leading pair?’

Under the distributive reading, mention-some answers each name only one atomic individual and thus are excluded by the plurality requirement.\footnote{In (15b), the distributive operator comes within the embedded predicate lead the dance and thus scopes below the possibility modal, and the mention-some reading of this form is blocked by the plurality requirement. An alternative form of distributivity proposed by Williams (2000) might also account for the unavailability of mention-some. To explain quantificational variability effects in questions with collective predicates (e.g., John knows for the most part which students formed the bassoon quintet), Williams proposes a complex lexical entry for the determiner which that has a built-in distributive operator. If we follow Williams’s idea, we predict yet a different distributive logical form for (15): since the distributive operator would be part of which (paraphrased as “which children are part of groups who can lead the dance?”), it would have to take a wide scope, yielding only a mention-all reading according to existing grammatical theories.}

References

Fox, Danny. 2013. Mention-some readings of questions. MIT seminar notes.
Fox, Danny. 2015. Mention some, reconstruction, and the notion of answerhood. Handout at Experimental and crosslinguistic evidence for the distinction between implicatures and presuppositions (ImPres).

Yimei Xiang, Alexandre Cremers
xiang.yimei@gmail.com, alexandre.cremers@gmail.com