Contents

Introduction 1

Martin Aher & Jeroen Groenendijk:
Deontic and epistemic modals in suppositional [inquisitive] semantics 2

Dorothy Ahn:
The semantics of additive either 20

Stavroula Alexandropoulou:
Testing the nature of variation effects with modified numerals 36

Curt Anderson:
Numerical approximation using some 54

Jefferson Barlew:
Coming to a doxastic agent 71

Corien Bary & Daniel Altshuler:
Double access 89

Toni Bassaganyas-Bars:
'Have' and the link between perfects and existentials in Old Catalan 107

Andrea Beltrama:
From totally dark to totally old. The formal semantics of subjectification 125

Andrea Beltrama & Jackson L. Lee:
Great pizzas, ghost negations: The emergence and persistence of mixed expressives 143

Ivano Ciardelli & Floris Roelofsen:
Alternatives in Montague Grammar 161

Elizabeth Coppock & Christian Josefson:
Completely bare Swedish superlatives 179

Christopher Davis & Daniel Gutzmann:
Use-conditional meaning and the semantics of pragmatisation 197

Karen Duek & Adrian Brasoveanu:
The polysemy of container pseudo-partitives 214
Allyson Ettinger & Sophia A. Malamud:
Mandarin utterance-final particle ba (吧) in the conversational scoreboard 232

Nicole Gotzner:
What’s included in the set of alternatives? Psycholinguistic evidence for a permissive view 252

Julian Grove:
Singular count pseudo-partitives 268

Daniel Gutzmann & Robert Henderson:
Expressive, much? 286

Elena Herburger:
Only if: If only we understood it 304

Roni Katzir & Raj Singh:
Economy of structure and information: Oddness, questions, and answers 322

Natalia Korotkova:
Evidentials in attitudes: do’s and don’ts 340

Helen Kouidobrova & Kathryn Davidson:
Watch the attitude: Embedding and role-shift in ASL 358

Sven Lauer:
Biscuits and provisos: Providing unconditional information by conditional means 377

Julia Lukassek:
A single-event analysis for German eventive mit-modifiers 395

Melania S. Masià:
Adjectives of veracity as vagueness regulators 413

Dejan Milačić & Raj Singh & Ida Toivonen:
On the morphosyntactic representation of dependent quantification: distance distributivity, dependent indefinites, and Skolemization 431

Prerna Nadathur & Daniel Lassiter:
Unless: an experimental approach 446

Miriam Nussbaum:
Subset comparatives as comparative quantifiers 465

Doris Penka:
At most at last 483

Agata Renans:
Imperfective in Ga (Kwa) 501

Maribel Romero:
High negation in subjunctive conditionals and polar questions 519
Antje Roßdeutscher:
Hidden universal quantification and change of argument structure in particle-verb constructions 537

Manfred Sailer:
Inverse linking and telescoping as polyadic quantification 555

Florian Schwarz & Jacopo Romoli & Cory Bill:
Scalar implicatures processing: slowly accepting the truth (literally) 573

Heiko Seeliger:
“Surely that’s not a negative declarative question?” – Polar discourses in Swedish, German and English 591

Todd Snider:
Using tautologies and contradictions 610

Benjamin Spector & Yasutada Sudo:
Presupposed ignorance and exhaustification 628

Adrian Stegovec & Magdalena Kaufmann:
Slovenian imperatives: You can’t always embed what you want! 641

Robert Truswell & Nikolas Gisborne:
Quantificational variability and the genesis of English headed wh-relatives 659

Yimei Xiang:
A grammatical view of exhaustification with focus movement: Evidence from NPI-licensing 677

Erik Zyman:
Lake Pátzcuaro P’urhepecha and the semantic typology of degree constructions 695
Introduction

The present volume contains a collection of papers presented at the 19th annual meeting “Sinn und Bedeutung” of the Gesellschaft für Semantik, which was held at the Georg-August-Universität Göttingen on September 15th - 17th, 2014 and which was jointly organized by LinG (Linguistics in Göttingen).

163 abstracts were submitted to SuB19; of the 52 talks of the program, 39 were elaborated into the papers in this collection, which appears online at:

LinG - Linguistics in Göttingen & semanticsarchive.net

The editors of the present volume would like to thank the authors for their contributions and all the anonymous reviewers for their collaboration. We also wish to thank our fellow organizers, Regine Eckardt, Paula Menendez-Benito, Edgar Onea, Igor Yanovich, our secretary Margitta Strüber, our student helpers, Nurcam Akcam, Ronja Brodhun, Benjamin Burkhardt, Paul Dijkzeul, Lea Fricke, Carina Kauf, Swantje Tönnis, Jessica Vaupel, Tanja Wiessner, all anonymous reviewers, the invited speakers, Ashwini Deo, Sabine Iatridou, Sophia Malamud and Ede Zimmermann (who could not be present) and all others involved for contributing to the success of this conference.

Eva Csipak & Hedde Zeijlstra
A Grammatical View of Exhaustification with Focus Movement: Evidence from NPI-Licensing

Yimei Xiang — Harvard University

Abstract. This paper offers an explanation to the NPI-licensing effect of only by incorporating focus movement into the grammatical view of exhaustification. The core assumption is that focus movement is motivated if interpreting focus in-situ yields a G-triviality/contradiction.

Keywords: NPI, Focus movement, Exhaustification, Alternative Semantics, Only

1. Introduction

It is well-known that the emphatic expression any is licensed as a (weak) negative polarity item (NPI) under downward-entailing (DE) contexts (Fauconnier 1975, 1979; Ladusaw 1979), such as under negation or in the left argument of a universal quantifier, as exemplified in (1) and (2), respectively. A context is DE if it supports a downward inference; for instance, observe in (3) that a downward inference holds from a set to its subset in the left argument of the universal quantifier every, but not in the left argument of the existential quantifier some.

(1) a. John didn’t read any papers.
 b. *John read any papers.

(2) a. Every student who has read any papers passed the exam.
 b. *Every student who has read some papers passed any exams.
 c. *Some student who has read any papers passed the exam.

(3) a. Every student passed the exam. → Every smart student passed the exam.
 b. Some student passed the exam. ⇔ Some smart student passed the exam.

The DE-based account is schematized as in (4), adopted from von Fintel (1999) and Gajewski (2007).

(4) a. An NPI is grammatical iff it appears in a constituent that is DE w.r.t. this NPI.
 b. A constituent A is DE w.r.t. α of type δ iff the function λx.[A[α/δ]]g[γ→x] is DE.
 [A[α/δ]] is the result of replacing α with δ in A.

³For helpful comments and criticism, I want to thank Gennaro Chierchia, Noah Constant, Michael Erlewine, Danny Fox, Martin Hackl, Andreea Nicolae, Hedde Zeijlstra, and the audiences at LFRG at MIT, GLOW 37, and Sub 19 for helpful suggestions and discussions. All errors in this work are my own responsibility.

²⊆’ stands for cross-categorical entailment (von Fintel 1999).

(1) a. For p, q of type t: p ⊆ q iff p is false or q is true.
 b. For f, g of type <σ, τ>: f ⊆ g iff for all x of type σ: f(x) ⊆ g(x).
 In particular, for a, a’ of type e: a ⊆ a’ iff for all P of type <e, t>: λP.P(a) ⊆ λP.P(a’).
c. A function f of type $<\sigma, \tau>$ is DE iff for all x and y of type σ s.t. $x \subseteq y$: $f(y) \subseteq f(x)$.

Klima (1964) firstly observed that the exclusive focus particle only can license NPIs. The emphatic expression any, for instance, can be licensed as an NPI in the right argument of NP-only or in the immediate scope of VP-only. Here and throughout the paper, I use CAPITAL letters to mark stressed items, and the F subscript to mark the semantic focus.

(5) Right argument of NP-only
 a. Only JOHN$_F$ read any papers.
 b. *JOHN$_F$ read any papers.

(6) Under VP-only
 a. Mary only gave any funding to JOHN$_F$.
 b. *Mary gave any funding to JOHN$_F$.

One empirical constraint for the NPI-licensing effect of only is that NPIs cannot appear within the semantic focus or any focus (F)-contained island (Wagner 2006 a.o.). In particular, NP-only does not license NPIs in its left argument, as shown in (7); and VP-only, for instance, cannot associate with or into an anyP, as shown in (8): when VP-only directly associates with the determiner any, the entire DP any paper, or simply the NP complement paper, the NPI use of any is not licensed.

(7) *Only any students saw John.
(8) a. *John only read ANY$_F$ papers.
 b. *John only read [any PAPERS]$_F$, (he didn’t read every book).
 c. *John only read any PAPERS$_F$, (he didn’t read any books).

(8c) also illustrates the inviability of associating only into an NPI-contained island. According to Abels (2003), the complement of a phasal head (e.g. the D^0 any) cannot move by itself and strand its embedding phrase head; it always pied-pipes its phasal head. Therefore, the anyP in (8c) exhibits an island effect, to the extent that PAPERS cannot be moved out of the anyP.

The remainder of this paper is organized as follows. Section 2 and 3 will show that neither the F(ocus)-movement theory (Wagner 2006) nor the G(rammatical)-view of exhaustification can properly address the NPI-licensing effect of only by its own. Thus Section 4 will propose an alternative approach that incorporates features of both theories, built up upon an assumption that F-movement is motivated by the requirement of avoiding G-trivialities/contradictions.

2. The theory of F-movement

2.1. The SDE-condition

The invalidity of downward inferences under only, firstly indicated by Atlas (1993), casts a doubt to Fauconnier-Ladusaw’s DE-based account of NPI-licensing. While the right argument of NP-only and the non-F-associated part of VP-only are eligible positions for licensing weak NPIs, these contexts do not support downward inferences, as shown in (9).
Given this problem, von Fintel (1999) proposes that S(trawson)DE environments are sufficient for licensing weak NPIs. The SDE condition, as schematized in (10), grants all presuppositions of the consequence when the validity of a downward inference is assessed. Further, von Fintel (1999) shows that only is an SDE function: the complement of only is DE when the prejacent presupposition is satisfied, as illustrated by the reasoning in (11).

\[
\text{(10) A function } f \text{ of type } <\sigma, \tau> \text{ is SDE iff for all } x \text{ and } y \text{ of type } \sigma \text{ such that } x \subseteq y \text{ and } f(x) \text{ is defined: } f(y) \subseteq f(x).
\]

\[
\text{(11) Kale is a vegetable.}
\text{John ate kale for breakfast.}
\text{Only John ate vegetables for breakfast.}
\text{\therefore Only John ate kale for breakfast}
\]

\[
\text{\because } f(x) \text{ is defined}
\]

\[
\text{\therefore } f(y)
\]

2.2. Wagner (2006)

Recall that only cannot license the NPI any when associated with or into the anyP. The SDE condition, nevertheless, still cannot capture the asymmetry between the F-associated part and the non-F-associated part in the scope of only. To explain this asymmetry, Wagner (2006) adopts the SDE condition and proposes a theory of F(ocus)-movement.

Wagner assumes that only has two syntactic arguments, a syntactic restrictor and a scope. In particular, only is SDE in its the scope but not in its restrictor. For instance, when the prejacent presupposition of only is granted, a downward inference is supported in (12) but not in (13).

\[
\text{\because } f(x) \text{ is defined}
\]

\[
\text{\therefore } f(y)
\]

Further, Wagner assumes that VP-only association invokes a covert phrasal movement of the focused expression to the restrictor of only. For cases where only associates into an island, he assumes that F-movement is island-sensitive (cf. Rooth 1985; among the others) and that the expression undertaking F-movement is the minimal F-contained island (Drubig 1994). For instance, what gets F-moved in (14a) and (14)b should be the complex DP and the when-clause, respectively. This assumption predicts an Island Restriction: “Association with a constituent within an island cannot license an NPI in the same island.” (Wagner 2006: 312)
Moreover, since F-movement is a phrasal movement, this assumption also predicts a Head Restriction: “If only associates with the head of a constituent, it does not license an NPI in the complement of the head.” Wagner (2006: ex. 42) For instance in (15), the F-moved element has to be the entire VP, including the anyP.3

(14) a. Dr. Smith only rejected [the proposal that JOHN_F submitted].
 b. Dr. Smith only complains [when BILL_F leaves the lights on].

(15) *John only CUT_F any vegetables.

This analysis immediately predicts that an NPI is not licensed in the immediate scope of VP-only if and only if this NPI appears within the F-moved constituent. This prediction is fully compatible with the observations with the VP-only in (6) and (8). In (6a), the focused NP moves alone to the restrictor of only, while the NPI any stays and gets licensed within the scope part, as illustrated in (16a). As for the ungrammatical sentences in (8), in contrast, the NPI any is part of the F-moved constituent and therefore is not licensed, as illustrated in (16b).4

(16) a. NPI is licensed
 b. NPI is not licensed

2.3. Problems with the F-movement theory

2.3.1. NPI-licensing condition

Like the predecessors, Wagner (2006) does not explain why NPIs are not licensed in non-(S)DE contexts; saying that NPIs must appear in (S)DE contexts is still a description.5 What’s more,

3Jon Gajewski points out an insufficiency of this explanation to Wagner (2006: fn. 14): the object anyP should be allowed to vacate the VP, and the remnant VP subsequently associate with only.

4In (8), the F-moved expression has to be the entire anyP, regardless of whether only associates with the entire anyP or with a sub-component of the anyP. On the one hand, the D^0 any alone cannot take an F-movement, which is a phrasal movement. On the other hand, according to Abels (2003), the complement of D^0 cannot be moved out of the DP; therefore, when the NP complement of any is forced to take F-movement, the entire anyP gets F-moved.

recent works on NPIs point out empirical problems with the SDE condition and criticize that SDE is neither necessary nor sufficient for NPI-licensing. On the one hand, as Crnič (2011) indicates, another prototypical F-sensitive expression exactly two can also license NPIs in its left argument, but exactly two is non-presuppositional and hence cannot be SDE; therefore the SDE condition is unnecessary for NPI-licensing. On the other hand, the SDE condition appears to be insufficient. For instance, the left arguments of DPs like the student and both students are SDE, but these positions do not license NPIs, as shown in (18) (Gajewski 2011, Chierchia 2013).

\[(17)\] Exactly two students did any reading at all.

\[(18)\] a. * The student who had any linguistics did well.

i. Presumption: \(|\text{students}_w| = 1\)

ii. Assertion: \(\text{students}_w \subseteq \text{did well}_w\)

b. * Both students who had any linguistics did well.

i. Presumption: \(|\text{students}_w| = 2\)

ii. Assertion: \(\text{students}_w \subseteq \text{did well}_w\)

2.3.2. Motivation of F-movement

Wagner (2006) argues that only presupposes an \(\exists\)-premise rather than the truth of its prejacent (Horn 1996, cf. Horn 1969). He schematizes the lexical entry of only as in (19), where the arguments \(f\) and \(P\) correspond to the syntactic restrictor/complement and the scope, respectively. The \(\exists\)-presupposition (19b) abstracts over the entire complement of only. Accordingly, (20) and (21) have the same semantic focus but different \(\exists\)-presuppositions. Here Wagner uses underlining to mark the syntactic complement/restrictor of only, \(\uparrow\) corner symbols to mark the scope of only, and italics to mark the semantic focus.

\[(19)\] a. \([\text{only}] (f)(P) = \forall a \in C [P(a) \rightarrow P(f) \subseteq P(a)]\)

b. Presumption: \(\exists x. P(x)\)

\[(20)\] With F-movement:

a. John only \(\uparrow\) played \(\text{basketball}\).

b. Presumption: \(\exists x. \text{John played } x\).

\[(21)\] Without F-movement:

a. John only \(\uparrow\) played \(\text{basketball}\).

b. Presumption: \(\exists x. \text{John } x\)-ed.

Next, adopting the Maximize Presupposition Principle from Heim (1991), Wagner assumes that F-movement is motivated to strengthen the \(\exists\)-presupposition of only: “F-movement minimizes the size the of the syntactic restrictor, which may have an effect on the strength of the statement that is grammatically encoded by the sentence.” (Wagner 2006: 314) For instance, the \(\exists\)-presupposition of only in (20) is stronger than the one in (21), motivating an F-movement.

I argue that the motivation of F-movement and the semantics of only proposed by Wagner have two empirical problems. First, the semantics of only defined in (19) is too weak for cases like (22). It predicts (22) to be felicitous and true even if only John ate kale. To correctly predict the meaning of
(22), Wagner would have to assume that *only* presupposes not just an existential inference but also the truth of its prejacent. Such a move, however, would make the MP Principle inapplicable: the *3*-presupposition, regardless of its strength, collapses under the prejacent presupposition; therefore, the F-moved form (20) would not be more preferable than the unmoved form (21).

(22) Only [John and Mary]$_F$ ate kale.
 a. Presupposition: Someone ate kale.
 b. Assertion: Anyone who ate kale is part of John+Mary.

Second, the assumed motivation of F-movement is incompatible with the basic example (15), repeated in (23). Accordingly, with or without F-movement, the syntactic complement of *only* in (23) is always the entire VP, and the *3*-presupposition is always (23a); therefore, if F-movement were used only to strengthen the *3*-presupposition, it would NOT be motivated in (23).

(23) *John only Γ CUT$_F$ any vegetablesγ.
 a. Presupposition: $\exists x$. John x-ed.
 b. Assertion: If John did any action to any vegetables, that action is no more than cutting.

Further, a sentence of the form “John only CUT$_F$ x” is not just SDE but also strict DE with respect to x: it is SDE because the downward inference holds in the asserted part ((24a-ii) entails (24b-ii)); it is strict DE because the *3*-presuppositions of (24a-b) are identical. Therefore, Wagner cannot explain the ungrammaticality of (23), regardless of which NPI-licensing condition he adopts.

(24) a. John only Γ CUT$_F$ vegetablesγ
 i. Presupposition: John did something.
 ii. Assertion: If John did any action to vegetables, that action is no more than cutting.
 b. \Rightarrow John only Γ CUT$_F$ kaleγ
 i. Presupposition: John did something.
 ii. Assertion: If John did any action to kale, that action is no more than cutting.

In addition to the empirical problems, the *3*-presupposition is defined unconventionally: it abstracts over the entire complement of *only*, not just the semantic focus (cf. Horn 1996). To this extent, the *3*-presupposition is isolated from other major semantic properties of focus, such as the semantic focus or the quantificational domain, which makes the lexicon of *only* quite inconsistent.

6Wagner (2006: ex. 44b) himself writes the presupposition of (24b) as “John did something with kale”, which however conflicts with his main assumption that the existential import abstracts over the entire complement of *only*.

7Wagner (2006) assumes that the semantic focus is obtained by contextually restricting the alternative set: alternatives to the entire syntactic complement are all considered; but the quantificational domain is contextually restricted, which helps to identify the semantic focus.
This inconsistency cannot be fixed under Wagner’s basic framework. On the one hand, if the \(\exists \)-presupposition is generated by abstracting over the semantic focus, its strength would not be affected by F-movement. On the other hand, if the quantificational domain is generated by abstracting over the complement of *only*, exhaustification would lead to overly strong interpretations for sentences where *only* associates into an island. For instance in (25), due to the Left-Branch Extraction Constraint (Ross 1986), an F-movement theory requests the entire possessive NP JOHN’s advisors to be F-moved. If the quantificational domain includes all the contextually relevant individuals, not just individuals that are someone’s advisors, (25) would take the overly strong reading in (25b).

(25) Sue only \(\exists \) invited JOHN\(F \)'s advisors \(\exists \).
 a. \(\rightarrow \) Sue didn’t invite anyone’s advisors except John’s advisors.
 b. \(\nleftrightarrow \) Sue didn’t invite anyone except John’s advisors.

2.3.3. Association with licensed NPIs

Recall Wagner’s prediction that an NPI is not licensed under *only* if it is part of the F-moved constituent. Conjoining this prediction with his claim that F-movement is mandatory for VP-*only* association, we get a stricter constraint stated as follows: VP-*only* cannot associate with an NPI or an NPI-contained island within which the NPI is not licensed. This constraint, however, is too strong for cases like (26), where *only* associates with the *any*P across another NPI-licenser (i.e. the clause-mate negation); the stricter constraint predicts (26) to take the LF in (27), under which the NPI *any* would not be licensed: the *any*P, as the minimal F-contained island, would be moved to the syntactic restrictor of *only*, a context that is non-SDE and cannot license NPIs.

(26) Mary only didn’t give [any FUNDing] \(F \) to John. (She did her best to help him.)
(27) [only (any funding)] \(i \) [Mary didn’t gave \(t_1 \) to John]]

3. The G-view of exhaustification

3.1. The G-view of scalar implicatures

The G-view of exhaustification (Chierchia 2004; among the others) is firstly introduced to analyze scalar implicatures (SIs henceforth). This view argues that the phenomenon of SI is not purely pragmatic, based on the fact that SIs can be generated in embedding contexts.

The main idea of the G-view is as follows. First, propositions containing scalar items are associated with sets of alternatives, which are computed point-wise in the same way as the answer sets of questions (Hamblin 1973) and the alternative sets of focus (Rooth 1985, 1992). Next,
alternatives keep growing until factored into meaning via a covert exhaustivity operator O. The O-operator affirms the prejacent and negates all the alternatives that are not entailed by the prejacent, as schematized in (28). Accordingly, an SI is a logic consequence of exhaustifying a sentence that contains a weak scalar item. For instance in (29), applying an O-operator over the *some*-sentence (notation: ϕ_{some}) affirms the prejacent ϕ_{some} and negates the stronger alternative ϕ_{all}, yielding the implicature $\neg \phi_{\text{all}}$.

\[
O(p) = p \land \forall q \in \text{ALT}(p)[p \not\subseteq q \rightarrow \neg q]
\]

(29) a. Some of the students came. \iff Not all of the students came.
 b. ALT(ϕ_{some}) = \{\phi_{\text{some}}, \phi_{\text{all}}\}
 c. $O(\phi_{\text{some}}) = \phi_{\text{some}} \land \neg \phi_{\text{all}}$

3.2. The G-view of NPIs

Chierchia (2006, 2013) extends the G-view of SIs to the issue of NPI-licensing with assumptions compatible with the Alternative Semantics (Rooth 1985, 1992, 1996) and the strict DE condition. He proposes that the NPI *any* is an existential indefinite like *some* but encoded with a grammatical feature [D]. This feature obligatorily activates a set of domain (D)-alternatives and must be checked off by a c-commanding O_D-operator.\(^9\) Exercising an O_D-operator over a sentence containing an occurrence of *any* has consequences in both syntax and semantics: in syntax, it checks off the [D] feature in the lexicon of *any*, just like a regular feature-checking operation; in semantics, it affirms the assertion and negates D-alternatives that are not entailed by the assertion.

Consider the basic positive sentence (30) to see how the G-view captures the DE condition of NPI-licensing. With an indefinite \exists-expression *any*, (30) asserts the \exists-inference in (31b). Moreover, the [D] feature of *any* activates a set of D-alternatives, generated by substituting the total domain D with a subdomain D', as schematized in (31c). Crucially, the monotonicity pattern of the entire clause with respect to the NPI *any* is upward-entailing (UE), and hence the proper D-alternatives are not entailed by the assertion. Last, applying O_D negates all the proper D-alternatives, yielding

\[\text{Total-D: } \{a, b\} \quad \text{Assertion } = \exists x \in \{a, b\} f(x)\]
\[\text{Sub-D: } \{a, b\}, \{a\}, \{b\} \quad \text{D-ALT } = \{\exists x \in \{a, b\} f(x), \exists x \in \{a\} f(x), \exists x \in \{b\} f(x)\}\]
\[\text{Proper sub-D: } \{a\}, \{b\} \quad \text{Proper D-ALT } = \{\exists x \in \{a\} f(x), \exists x \in \{b\} f(x)\}\]

\(^8\)Here and throughout the paper, the symbols O and p are sloppily used for both syntactic phrases and truth conditions. A stricter semantic representation for O is as follows, where S is the immediate c-commanded phrase of O.

\[
\mathcal{J}^\circ_S w^r = \mathbb{[}S\mathbb{]}(w) \land \forall \mathbb{S} \in \text{ALT}(S)[\mathbb{S} \not\subseteq \mathbb{S}' \rightarrow \neg \mathbb{S}'(w)]
\]

\(^9\)A schematic example for the total domain D and its corresponding D-alternative sets is as follows. The the proper D-alternative set does not include the prejacent.
the exhaustivity inference (31d), which however contradicts to the assertion (31b), as shown in (31e). This contradiction is the source of the ungrammaticality of (30).10

\begin{align*}
(30) & \quad \ast \text{John read any papers.} \\
(31) & \hspace{1em} \text{a. } O_D [\text{John read any}_D \text{ papers}] \\
& \hspace{1em} \text{b. Assertion: } \exists x \in D'[P(x) \land R(j,x)] \\
& \hspace{1em} \text{(John read some papers in the total domain } D) \\
& \hspace{1em} \text{c. D-ALT = } \{ \exists x \in D'[P(x) \land R(j,x)] \mid D' \subseteq D \} \\
& \hspace{1em} \text{d. } \forall D'[D' \subset D \rightarrow \neg \exists x \in D'[P(x) \land R(j,x)] \\
& \hspace{1em} \text{(for any proper subdomain } D', \text{ John read no paper in } D') \\
& \hspace{1em} \text{e. } \llbracket (31a) \rrbracket = \llbracket (31b) \rrbracket \land \llbracket (31d) \rrbracket = \bot \\
& \hspace{1em} \text{(} \# \text{ John read some papers in } D, \text{ but he read no paper in any proper sub-domain } D')
\end{align*}

The contradiction in (31e) is essentially different from the one in (32). The one in (31e) makes (30) ungrammatical, while the one in (32) makes the utterance infelicitous but not ungrammatical. To tell them apart, Chierchia (2013) adopts the notions from Gajewski (2002) and describes the contradiction in (31e) as “G(rammatical)-triviality”, a special case of L(ogical)-triviality.11

\begin{equation}
(32) \quad \# \text{ It is raining and it isn’t raining.}
\end{equation}

Under the G-view, the contradiction in (31e) can be avoided if the O_D-operator is applied \textit{immediately} over a constituent that is DE with respect to the NPI \textit{any}. Consider the basic negative sentence (33) for example. By virtue of negation, all the D-alternatives are entailed by the assertion and therefore unexcludable. The O_D-operator, although is mandatorily present for the sake of checking off the grammatical feature \{D\}, is semantically vacuous.

\begin{align*}
(33) & \quad \text{John didn’t read any papers.} \\
(34) & \hspace{1em} \text{a. } O [\text{John didn’t read any}_D \text{ papers}]
\end{align*}

10Consider the following mini model for a simpler illustration of this idea. Assume that the total domain D contains exactly two items, paper p_1 and paper p_2. The D-alternative set is thus schematized as in (1b), containing exactly three elements: the asserted proposition $\text{John read a paper in } \{p_1,p_2\}$ and the proper D-alternatives including $\text{John read a paper in } \{p_1\}$ and $\text{John read a paper in } \{p_2\}$. The proper D-alternatives are not entailed by the assertion. Therefore, applying an O_D-operator affirms the assertion and negates both proper D-alternatives, yielding the contradictory inference $\text{John read } p_1 \text{ or } p_2$, and he did not read p_1, and he did not read p_2, as schematized in (1c).

\begin{align*}
(1) & \hspace{1em} \text{a. } D = \{p_1,p_2\} \\
& \hspace{1em} \text{b. } D-\text{ALT} = \{ R(j,p_1) \lor R(j,p_2), R(j,p_1), R(j,p_2) \} \\
& \hspace{1em} \text{c. } R(j,p_1) \lor R(j,p_2) \land \neg R(j,p_1) \land \neg R(j,p_2) = \bot
\end{align*}

11L-trivialities are tautologies or contradictions in the traditional sense. While G-triviality means that a sentence receives the same value regardless of how the lexical terminals are replaced in the structure. For the purpose of this paper, it is enough to vaguely understand “G-triviality” as a type of L-triviality assessed at the grammatical level.
b. Assertion: \(\neg \exists x \in D[P(x) \land R(j, x)] \)
(John read no paper in the total domain \(D \).)

c. \(D\text{-ALT} = \{ \neg \exists x \in D'[P(x) \land R(j, x)] \mid D' \subseteq D \} \)

d. \((33a) = (33b) = \neg \exists x \in D[P(x) \land R(j, x)] \)
(John read no paper in the total domain \(D \).)

3.3. Extending the G-view to \textit{only}

Krifka (1995), Lahiri (1998), and Chierchia (2013) extend the G-view of NPIs to the exclusive focus particle \textit{only}. They adopt the lexical entry of \textit{only} from Horn (1969), which assumes that \textit{only} asserts an exhaustivity inference and presupposes the truth of its prejacent. The non-F-associated part of the asserted exhaustivity inference, crucially, is DE and hence is capable of licensing NPIs.

Under the schematic notations in Chierchia (2013), the \textit{only}-sentence (35) takes the LF in (36a).

This LF has two exhaustification operators, \(O_D \) and \textit{only}, checking off the [D] feature of \textit{any} and the [F] feature of the semantic focus, respectively. The prejacent presupposition and the asserted exhaustivity inference are schematized as in (36b) and (36c), respectively. The D-alternatives are generated from the assertion by replacing the total domain \(D \) with a subdomain \(D' \), as in (36d).

(35) Only JOHN read any papers.

(36) a. \(O_D \) [only [JOHN\textsubscript{F} read any\textsubscript{D} papers]]

b. Presupposition: \(\exists x \in D[P(x) \land R(j, x)] \)
(John read some paper in the total domain \(D \).)

c. Assertion: \(\forall y \in D_0 \ [\exists x \in D[P(x) \land R(y, x)] \rightarrow j \subseteq y] \)
(For any individual \(y \), if \(y \) read a paper in the total domain \(D \), then \(y \) is John.)

d. \(D\text{-ALT} = \{ \text{only [JOHN\textsubscript{F} read any\textsubscript{D'} papers]} : D' \subseteq D \} \)
\(= \{ \forall y \in D_0 \ [\exists x \in D'[P(x) \land R(y, x)] \rightarrow j \subseteq y] \mid D' \subseteq D \} \)

The presupposed component (35b), as firstly argued by Gajewski (2011) and extended by Chierchia (2013), is irrelevant for assessing the [D] feature of a weak NPI like \textit{any}.\footnote{Gajewski (2011) proposes that presuppositions and implicatures are relevant only for assessing the [D] feature of strong NPIs, not for that of weak NPIs. This proposal captures the contrast between weak NPI-licensing and strong NPI-licensing under \textit{only}. For instance, \textit{only} does not license the strong NPI \textit{in years} in the non-F-associated part.} The asserted component (36c) is DE with respect to the non-F-associated part (underlined), where the NPI \textit{any} appears. Therefore, the NPI \textit{any} is licensed in (35), as it would be in any DE contexts.

\begin{enumerate}
\item Only JOHN came in years.
\end{enumerate}

The prejacent presupposition of \textit{only} is purely UE, which, together with the asserted exhaustivity inference, makes the entire \textit{only}-clause non-monotonic with respect to the strong NPI \textit{in years}. Therefore, applying \(O_D \) to assess the [D] features in the presupposition and assertion yields a contradiction, making the strong NPI unlicensed.
In sum, the G-view provides an explanation to the DE condition of NPI-licensing: checking off the [D] feature of an NPI with a covert O_D-operator yields a contradiction/G-triviality iff the O_D-operator is applied immediately over a constituent that is non-DE with respect to this NPI. As for case of only, the G-view shows that the assertion of an only-clause is DE in the non-F-associated part, which therefore gets (weak) NPIs licensed.

3.4. Problems with the G-view

The G-view, however, is not the best solution. As a successor of Roothean Alternative Semantics, the G-view assumes that focus is interpreted in-situ and that F-alternatives are propositional. For both NP-only and VP-only, the G-view defines their quantificational domains as proposition sets.

\[
\text{[only]}(p) = \forall q \in ALT(p) \left[q \rightarrow p \subseteq q \right]
\]

Nevertheless, the assumption that F-alternatives is propositional conflicts with the fact that only licenses weak NPIs. In (37), we can easily see that the boxed position for \([q]\) is non-DE. To be more accurate, consider a stricter schematic representation for the asserted component of the only-sentence (35). If the F-alternatives were propositional, then the asserted component of (35) would be schematized as follows.

\[
\forall q \in \{ \exists x \in D[P(x) \land R(y,x) \mid y \in D_e] \} \left[[q] \rightarrow \exists x \in D[P(x) \land R(j,x)] \subseteq [q] \right]
\]

Here the quantificational domain of only is characterized as a set of propositions in the form of “y read a paper in the total domain D”, where y is a contextually relevant individual. This schematic representation has three positions relevant to the assessment of the [D] feature (namely, containing an occurrence of any), each marked with a box. The first boxed position, as the restriction of a \(\forall\)-quantification, is DE; but the latter two boxed positions, as within the scope of the \(\forall\)-quantification, are UE. Therefore, under this representation, the entire assertion would be non-monotonic with respect to any, which however incorrectly predicts the NPI any to be unlicensed in (35).

Thus, to capture the NPI-licensing effect of only, the G-view has to give up its own convention and write the quantificational domain of only as a set of individuals, as we have seen in (35c), where only the restriction part of the \(\forall\)-quantification is relevant to the assessment of the [D] feature.

4. My analysis: grammatical view of exhaustification with F-movement

Wrapping things up, neither the F-movement theory nor the G-view can properly address the NPI-licensing effect of only on its own. On the one hand, the F-movement theory is lacking of an explanation to the NPI-licensing condition. On the other hand, the G-view does provide a plausible explanation to the licensing condition, but this explanation is viable only if the theory supports an operation (e.g. F-movement) that can split up the c-commanding domain of only and create a DE-
context. In such a case, a natural move would be to incorporate F-movement into the G-view. To integrate F-movement with the G-view, the only needed assumption is as follows.\(^1\)

\[\text{(39) Motivation of F-movement} \]
\[\text{The requirement of avoiding G-trivialities motivates } F\text{-movement.} \]

The rest of this section is organized as follows. Section 4.1 to 4.3 will focus on three basic cases. Case 1 covers sentences without NPIs or with NPIs that are licensed by operators other than \textit{only}. Discussions on Case 2-3 will explain the NPI-licensing effect of \textit{only}, in particular, why \textit{only} licenses NPIs, and why NPIs cannot appear within the semantic focus or an F-contained island. In section 4.4, I will move onto the so-called “Head Restriction”.

4.1. Case 1: F-movement is not motivated

Under the motivation of F-movement assumed above, focus should be interpreted in-situ as long as interpreting it in-situ does not yield a G-triviality/contradiction. For instance in (40), the NPI \textit{any} can be licensed in-situ by the clause-mate negation and hence the focus does not need to move.

\[\text{(40) Mary only didn’t give any}_D\text{ funding to }\text{JOHN}_F \]

\[\text{Only } O_D \text{ not } [\text{Mary gave any}_D\text{ funding to }\text{JOHN}_F] \]

Under the present analysis, F-movement is not motivated in (41), because interpreting focus in-situ does not yield a contradiction.

\[\text{(41) Mary only didn’t give } [\text{any FUNDing}]_F \text{ to John. She did her best to help him.} \]

When focus is interpreted in-situ, F-alternatives are propositional. The asserted meaning of VP-\textit{only} can be schematized as in (42), à la Rooth 1985. Here \(p \) stands for the complement of VP-\textit{only}. \(\llbracket p \rrbracket_f \) and \(\llbracket p \rrbracket_0 \) correspond to the focus value of \(p \) and the ordinary value of \(p \), respectively.\(^1\)

\[\text{(42) } a. \llbracket \alpha_F \rrbracket_f = D_{\text{type}}(\llbracket \alpha_0 \rrbracket) \]
\[b. \llbracket \alpha \rrbracket_f = \{ \llbracket \alpha \rrbracket_0 \} \]
\[c. \llbracket \alpha(\beta) \rrbracket_f = \{ a(b) \mid a \in \llbracket \alpha \rrbracket_f, b \in \llbracket \beta \rrbracket_f \} \]

\(^{13}\)It is worthy of noticing that G-triviality is assessed at LF, therefore the rule (39) only applies to movement at LF, not to movement in the overt syntax. For instance, it is not the source of the overt F-movement in Hungarian.

\(^{14}\)A question arises as to why logical inferences motivate syntactic operations. I would link this question to the architecture of the universal grammar. Chierchia (2006, 2013) indicates that the structure-building apparatus (e.g. Merge, Move, Agree) and the inferential one are not radically different; “grammar only sees functional/logical material; logic sees functional/logical material and whether the lexical material is the same or different.” (Chierchia 2013: 444) The notion of G-triviality, in particular, relates logic tightly to grammar, as a L-triviality taking effects in grammar.

\(^{15}\)The ordinary value of \(p \) is simply the truth value of \(p \); the focus value of \(p \) is a set of F-alternatives to \(p \), built up compositionally from the focus value of the semantic focus, defined as follows.
Consider the example (25) again, repeated below. The quantificational domain of only is the focus value of the prejacent VP, namely a set of propositions in the form of “Sue invited x’s advisors”. Exhaustifying over this domain yields the desired reading (43a), as schematized in (44).

(43) Sue only invited JOHNF’s advisors.
 a. → Sue didn’t invite anyone’s advisors except John’s advisors.
 b. 7 Sue didn’t invite anyone except John’s advisors.

(44) a. [Sue invited JOHNF’s advisor]0 = I[s, A(j)]
 b. [JOHNF]f = De
 c. [Sue invited JOHNF’s advisor]f = {I[s, A(x)] | x ∈ De}
 d. [((43))] = ∀q ∈ {I[s, A(x)] | x ∈ De}[q → I[s, A(j)] ⊑ q]
 (For any true proposition q in the form of “Sue invited x’s advisors”, q is entailed by the prejacent that “Sue invited John’s advisors.”)

4.2. Case 2: F-movement is motivated

Recall the main problem of the G-view: if F-alternatives were propositional, an only-sentence with an NPI would be non-DE with respect to this NPI. Therefore, to capture the NPI-licensing effect of only in sentences like (45a-b), I assume that in those cases the semantic focus (or F-contained island, if any) has to be moved out of the VP, splitting the VP into two sub-constituents, namely the moved phrase, corresponding to the syntactic restrictor of only, and the remnant VP, corresponding to the scope of only. In particular, to distinguish between VP-only and NP-only, I assume that F-movement is covert in (45a) but overt in (45b).

(45) a. Mary only gave any funding to JOHNF.
 [OD [only (JOHNF,i) [Mary gave anyD funding to ti]]] Covert F-movement
 b. Only JOHNF read any papers.
 [OD [only (JOHNF,i) [ti read any papers.]]] Overt F-movement

As for the semantics of only, I follow Alternative Semantics and assume that the quantificational domain of only is the focus value of the F-moved phrase. A cross-categorial definition of only is given in (46), where f and g correspond to the unmoved and moved part, respectively.

(46) [only](f<α,τ>)(gα) = ∀g' ∈ [g]f[f(g') → [g]0 ⊑ g']

For instance in (47), F-movement is motivated to avoid contradictions. The Left-Branch Extraction Constraint requests the F-contained island, JOHNF’s advisors, to be moved as a whole. Then the
quantificational domain of *only* would be the focus value of the moved possessive NP, namely the set of contextually relevant individuals who are someone’s advisors.

(47) Mary only gave any\textsubscript{D} funding to \textsc{John}’s advisors.
 a. \([\textsc{John}’s advisors}]_f = \{A(x) : x \in D_e\}
 b. \([\textsc{John}’s advisors}]_0 = A(j)
 c. \([47] = \forall y \in \{A(x) : x \in D_e\}[I(s,y) \rightarrow A(j) \subseteq y]

(For anyone’s advisors \(y\), if Mary invited \(y\), then \(y\) is/are John’s advisors.)

4.3. Case 3: F-movement is unhelpful

Recall the fact that *only* cannot *directly* associate with an NPI or with/into an NPI-contained island without crossing another NPI-licenser. Relevant examples discussed above are collected in (48). I will show that the reason why NPIs are not licensed in these examples is that F-movement cannot salvage their G-trivialities/contradictions.

(48) a. *John read only ANY\textsubscript{F} papers.
 b. *John read only [any PAPERS]\textsubscript{F}, (he didn’t read every book).
 c. *John read only any PAPERS\textsubscript{F}, (he didn’t read any books).
 d. *Mary only gave a book to John [because BILL\textsubscript{F} gave any book to him].

Consider (48b) for example, where *only* associates with the entire any\textsubscript{P}. To pursue a stipulation-free analysis, I will consider all possible syntactically well-formed LFs, including LFs where the [D] feature of any is assessed by a covert \(O_D\), as well as LFs where the [D] feature is assessed by overt *only*, as structured in (49) and (50), respectively.

(49) **Assessing [D] with \(O_D\)**
 a. \(O_D [\text{only [John read [any\textsubscript{D} PAPERS]\textsubscript{F} }}] \)\textsubscript{F}\textsubscript{D} Without F-movement
 b. \(O_D [\text{only (any\textsubscript{D} PAPERS)\textsubscript{F,i} [John read \text{t}_i}]\)\textsubscript{F}\textsubscript{D} With F-movement

(50) **Assessing [D] with *only***
 a. only [John read [any\textsubscript{D} PAPERS]\textsubscript{F}]
 b. [only (any\textsubscript{D} PAPERS)\textsubscript{F,i} [John read \text{t}_i]]

Let us start with the option that only the covert operator \(O_D\) can assess a [D] feature. If the any\textsubscript{P} is interpreted in-situ, as in (51a), then the [D] feature of any would be assessed within the boxed part, which is within the scope of a \(\forall\)-quantification and is non-DE. Then applying \(O_D\) over the only-clause to check off the [D] feature would yield a semantic contradiction. Alternatively, if the focused any\textsubscript{P} is F-moved, it would be interpreted under the immediate scope of \(O_D\), a context that
is also non-DE. The main difference between (51) and (52) in semantics is that the quantificational domain of only is a set of propositions in (51) but a set of generalized quantifiers in (52).16

\begin{align*}
\begin{array}{l}
(51) \quad \text{a. } O_{D}[\text{John read } \{\text{any } D\ \text{PAPERS}\}_F] \\
\quad \text{b. Assertion: } \forall q \in Q[\lambda x.R(j,x)] ~ [Q \in D_{<e,t>}] \Rightarrow [\exists x \in D[P(x) \wedge R(j,x)] \subseteq q] \\
(52) \quad \text{a. } O_{D}[\text{any } D\ \text{PAPERS} F,j [\text{John read } t_1]] \\
\quad \text{b. Assertion: } \forall Q_{<e,t>} [Q[\lambda y. R(j,y)] \Rightarrow [\exists x \in D[P(x) \wedge S(x)] \subseteq Q]
\end{array}
\end{align*}

Now move onto the option that the overt exclusive particle only can check off any alternative-related features, including the [D] feature. In such a case, the O_D-operator ought to be eliminated from the LF of a only-sentence, because there is no unchecked [D] left for O_{D}. This option has not been considered by the canonical G-view. But in theory, there is no reason to rule it out.

First, consider the possibility of interpreting anyP in-situ. Under the LF (53a), the only-sentence presupposes its prejacent as in (53d) and asserts the exhaustivity inference as in (53e). The quantificational domain of only consists of F-alternatives and D-alternatives: F-alternatives are in the form of “John read X”, where X is a generalized quantifier; D-alternatives are in the form of “John read a book in D'”, where D' is a subset of the total domain D. The asserted exhaustivity inference entails the negation of all the proper D-alternatives, yielding the inference John didn’t read any paper in any proper subdomain D', as in (53f). This inference, however, contradicts the prejacent presupposition John read a paper in the total domain D, predicting the NPI any to be unlicensed.17

\begin{align*}
\begin{array}{l}
(53) \quad \text{a. } \text{only } D\ \text{PAPERS} F \\
\quad \text{b. } \text{ALT}_F = \{Q[\lambda x. R(j,x)] ~ [Q \in D_{<e,t>}] \} \\
\quad \text{c. } \text{ALT}_D = \{\exists x \in D'[P(x) \wedge R(j,x)] ~ | ~ D' \subseteq D\} \\
\quad \text{d. } \exists x \in D[P(x) \wedge R(j,x)] \\
\quad \text{e. } \forall q \in \text{ALT}_{F,D} [\exists x \in D[P(x) \wedge R(j,x)] \subseteq q] \Rightarrow \neg q \\
\quad \text{f. } \Rightarrow \forall D'[D' \subseteq D \Rightarrow \neg \exists x \in D'[P(x) \wedge R(j,x)]] \\
\quad \text{(John didn’t read any paper in any proper subdomain D')}
\end{array}
\end{align*}

16Individuals of type e can also be type-shifted into generalized quantifiers.

17Consider the mini-model below for a simpler illustration of (53). Assume that the total domain D contains exactly two papers, p_1 and p_2. The D-alternative set thus contains three propositions, John read p_1 or p_2, John read p_1, and John read p_2, as in (1b). The exhaustivity assertion negates both proper sub-D alternatives, yielding the inference John didn’t read p_1 or p_2 in (1c), which contradicts the prejacent presupposition John read p_1 or p_2 in (1d).

\begin{align*}
\begin{array}{l}
(1) \quad \text{a. } D = \{p_1, p_2\} \\
\quad \text{b. } D-\text{ALT} = \{R(j,p_1) \lor R(j,p_2), R(j,p_1), R(j,p_2)\} \\
\quad \text{c. } \text{Assertion entails: } \neg R(j,p_1) \lor \neg R(j,p_2) \\
\quad \text{d. } \text{Prejacent Presupposition: } R(j,p_1) \lor R(j,p_2)
\end{array}
\end{align*}
This reasoning also applies to the LF in (54), where the anyP takes covert F-movement to the complement of only: the exhaustivity assertion in (54e) entails the inference in (54f), which contradicts the prejacent presupposition in (54d). The major difference between the schematic derivations in (53) and (54) is the semantic type of their alternatives: in (53), all the alternatives are propositions; but in (54), all the alternatives are generalized quantifiers. In particular, the D-alternatives in (54c) are existential quantifiers quantifying over papers in a subset domain D0.

(54) a. [only (anyD PAPERS)F,i [John read ti]]
 b. \(ALT_F = D_{<et,i>} \)
 c. \(ALT_D = \{ \lambda S. \exists x \in D'[P(x) \land S(x)] \mid D' \subseteq D \} \)
 d. \(\exists x \in D[P(x) \land R(j,x)] \)
 e. \(\forall Q \in ALT_{F,D}[Q \nsubseteq \lambda S. \exists x \in D[P(x) \land S(x)] \rightarrow \neg Q[\lambda y.R(j,y)] \] \)
 f. \(\Rightarrow \forall D'[D' \subseteq D \rightarrow \neg \exists x \in D'[P(x) \land R(j,x)] \]

(John didn’t read any paper in any proper subdomain D’)

To sum up, if only associates with an anyP, all the syntactically well-formed LFs of (48b) yield a G-triviality; therefore the NPI any is not licensed in (48b). First, if the [D] feature of any is assessed by a covert OD, then the G-triviality would be a logical consequence of the affirmed exhaustivity assertion and the negated proper D-alternatives. Second, if the [D] feature is assessed by overt only, then the G-triviality would result from the contradiction between the prejacent presupposition of only and the negation of the proper sub-D alternatives.

4.4. The “Head Restriction”

The present analysis can easily capture the “Head Restriction”. In (55), although the anyP can vacate from the VP before the [D] feature gets assessed, it can and can only be raised to the place sandwiched between OD and only, which is still non-DE. In contrast, the conditional (56) is DE in its antecedent; therefore, once the anyP undertakes QR over only, the whole conditional would be DE with respect to the NPI.

(55) *John only CUTF any vegetables.
[OD [anyD vegs], [only [John CUTF ti]]]

(56) If John only CUTF any vegs (and didn’t STEAMF any vegs), Mary would be unhappy.

Note that the NPI any is not licensed once if the anyP cannot take quantifier raising over only, even if the only-sentence is uttered as the antecedent of a conditional or in some other DE context. For instance, the NPI any is not licensed in (57), a conditional where only associates into an anyP. First, the determiner any cannot take F-movement alone, ruling out the possibility in (57a). Second, since an only-associated focus cannot be moved from beneath only (Tancredi 1990), the F-contained anyP cannot raise over only, ruling out the possibility in (57b).
(57) *If John only invited [anyone’s ADVISORS], the students would be unhappy.
 a. If John only invited anyone’s ADVISORS, ...
 (xsi)
 b. If John only invited anyone’s ADVISORS, ...
 (xsi)

5. Conclusions

The goal of this paper has been to explain the NPI-licensing effect of only. I incorporated F-
movement into the G-view of exhaustification with a simple assumption that F-movement is moti-
vated by the requirement of avoiding contradictions.

References

Tancredi, C. (1990). Not only EVEN, but even ONLY. Manuscript, MIT.